Lau, Dietlinde
Function Algebras on Finite Sets
1. Introduction
2. Preliminaries
Part I. Universal Algebra
3. Basic Concepts of Universal Algebra
4. Lattices
5. Hull Systems and Closure Operators
6. Homomorphisms, Congruences, and Galois Connections
7. Direct and Subdirect Products
8. Varieties, Equational Classes, and Free Algebras
Part II. Function Algebras
9. Basic Concepts, Notations, and First Properties
10. The Galois-Connection Between Function- and Relation-Algebras
11. The Subclasses of
12. The Subclasses of
13. The Maximal Classes of
14. Rosenberg’s Completeness Criterion for
15. Further Completeness Criteria
16. Some Properties of the Lattice mathbb{L}_k
17. Congruences and Automorphisms on Function Algebras
18. The Relation Degree and the Dimension of Subclasses of
19. On Generating Systems and Orders of the Subclasses of
20. Subclasses of
21. Classes of Linear Functions
22. Submaximal Classes of
23. Finite and Countably Infinite Sublattices of Depth 1 or 2 of mathbb{L}_3
24. The Maximal Classes of n
25. Maximal Classes of
26. Further Submaximal Classes of
27. Minimal Classes and Minimal Clones of
28. Partial Function Algebras
DRM-restrictions
Printing: not available
Clipboard copying: not available
Avainsanat: MATHEMATICS / General MAT000000
- Tekijä(t)
- Lau, Dietlinde
- Julkaisija
- Springer
- Julkaisuvuosi
- 2006
- Kieli
- en
- Painos
- 1
- Kategoria
- Eksaktit luonnontieteet
- Tiedostomuoto
- E-kirja
- eISBN (PDF)
- 9783540360230