Login

Chen, Ding-Geng (Din)

Monte-Carlo Simulation-Based Statistical Modeling

Chen, Ding-Geng  (Din) - Monte-Carlo Simulation-Based Statistical Modeling, ebook

138,35€

Ebook, PDF with Adobe DRM
ISBN: 9789811033070
DRM Restrictions

PrintingNot allowed
Copy to clipboardNot allowed

Table of contents

Part I. Monte-Carlo Techniques

1. Joint Generation of Binary, Ordinal, Count, and Normal Data with Specified Marginal and Association Structures in Monte-Carlo Simulations
Hakan Demirtas, Rawan Allozi, Yiran Hu, Gul Inan, Levent Ozbek

2. Improving the Efficiency of the Monte-Carlo Methods Using Ranked Simulated Approach
Hani Michel Samawi

3. Normal and Non-normal Data Simulations for the Evaluation of Two-Sample Location Tests
Jessica R. Hoag, Chia-Ling Kuo

4. Anatomy of Correlational Magnitude Transformations in Latency and Discretization Contexts in Monte-Carlo Studies
Hakan Demirtas, Ceren Vardar-Acar

5. Monte-Carlo Simulation of Correlated Binary Responses
Trent L. Lalonde

6. Quantifying the Uncertainty in Optimal Experiment Schemes via Monte-Carlo Simulations
H. K. T. Ng, Y.-J. Lin, T.-R. Tsai, Y. L. Lio, N. Jiang

Part II. Monte-Carlo Methods in Missing Data

7. Markov Chain Monte-Carlo Methods for Missing Data Under Ignorability Assumptions
Haresh Rochani, Daniel F. Linder

8. A Multiple Imputation Framework for Massive Multivariate Data of Different Variable Types: A Monte-Carlo Technique
Hakan Demirtas

9. Hybrid Monte-Carlo in Multiple Missing Data Imputations with Application to a Bone Fracture Data
Hui Xie

10. Statistical Methodologies for Dealing with Incomplete Longitudinal Outcomes Due to Dropout Missing at Random
A. Satty, H. Mwambi, G. Molenberghs

11. Applications of Simulation for Missing Data Issues in Longitudinal Clinical Trials
G. Frank Liu, James Kost

12. Application of Markov Chain Monte-Carlo Multiple Imputation Method to Deal with Missing Data from the Mechanism of MNAR in Sensitivity Analysis for a Longitudinal Clinical Trial
Wei Sun

Part III. Monte-Carlo in Statistical Modellings and Applications

13. Monte-Carlo Simulation in Modeling for Hierarchical Generalized Linear Mixed Models
Kyle M. Irimata, Jeffrey R. Wilson

14. Monte-Carlo Methods in Financial Modeling
Chuanshu Ji, Tao Wang, Leicheng Yin

15. Simulation Studies on the Effects of the Censoring Distribution Assumption in the Analysis of Interval-Censored Failure Time Data
Tyler Cook, Zhigang Zhang, Jianguo Sun

16. Robust Bayesian Hierarchical Model Using Monte-Carlo Simulation
Geng Chen, Sheng Luo

17. A Comparison of Bootstrap Confidence Intervals for Multi-level Longitudinal Data Using Monte-Carlo Simulation
Mark Reiser, Lanlan Yao, Xiao Wang, Jeanne Wilcox, Shelley Gray

18. Bootstrap-Based LASSO-Type Selection to Build Generalized Additive Partially Linear Models for High-Dimensional Data
Xiang Liu, Tian Chen, Yuanzhang Li, Hua Liang

19. Erratum to: Monte-Carlo Simulation-Based Statistical Modeling
Ding-Geng (Din) Chen, John Dean Chen

Keywords: Statistics, Statistics for Life Sciences, Medicine, Health Sciences, Biostatistics

Editor
 
Publisher
Springer
Publication year
2017
Language
en
Edition
1
Series
ICSA Book Series in Statistics
Page amount
20 pages
Category
Natural Sciences
Format
Ebook
eISBN (PDF)
9789811033070
Printed ISBN
978-981-10-3306-3

Similar titles