Boudet, Roger
Quantum Mechanics in the Geometry of Space-Time
1. Introduction
Roger Boudet
2. The Clifford Algebra Associated with the Minkowski Space–Time
Roger Boudet
3. Comparison Between the Real and the Complex Language
Roger Boudet
4. Geometrical Properties of the U(1) Gauge
Roger Boudet
5. Relation Between the U(1) Gauge, the Spin and the Energy of a Particle of Spin 1/2
Roger Boudet
6. The Dirac Theory of the Electron in Real Language
Roger Boudet
7. The Invariant Form of the Dirac Equation and Invariant Properties of the Dirac Theory
Roger Boudet
8. Geometrical Properties of the SU(2) Gauge and the Associated Momentum–Energy Tensor
Roger Boudet
9. Geometrical Properties of the SU(2) timesU(1) Gauge
Roger Boudet
10. The Electroweak Theory in STA: Global Presentation
Roger Boudet
11. The Electroweak Theory in STA: Local Presentation
Roger Boudet
12. On a Change of SU(3) into Three SU(2) times U(1)
Roger Boudet
13. A Real Quantum Electrodynamics
Roger Boudet
14. Real Algebras Associated with an Euclidean Space
Roger Boudet
15. Relation Between the Dirac Spinor and the Hestenes Spinor
Roger Boudet
16. The Movement in Space–Time of a Local Orthonormal Frame
Roger Boudet
17. Incompatibilities in the Use of the Isospin Matrices
Roger Boudet
18. A Proof of the Tetrode Theorem
Roger Boudet
19. About the Quantum Fields Theory
Roger Boudet
Keywords: Physics, Mathematical Methods in Physics, Quantum Field Theories, String Theory, Classical and Quantum Gravitation, Relativity Theory
- Author(s)
- Boudet, Roger
- Publisher
- Springer
- Publication year
- 2011
- Language
- en
- Edition
- 1
- Series
- SpringerBriefs in Physics
- Page amount
- 12 pages
- Category
- Natural Sciences
- Format
- Ebook
- eISBN (PDF)
- 9783642191992