Login

Taylor, Graham K.

Animal Locomotion

Taylor, Graham K. - Animal Locomotion, ebook

161,20€

Ebook, PDF with Adobe DRM
ISBN: 9783642116339
DRM Restrictions

PrintingNot allowed
Copy to clipboardNot allowed

Table of contents

I. The Hydrodynamics of Swimming

1. Swimming hydrodynamics: ten questions and the technical approaches needed to resolve them
George V. Lauder

2. A potential-flow, deformable-body model for fluid-structure interactions with compact vorticity: application to animal swimming measurements
Jifeng Peng, John O. Dabiri

3. Wake visualization of a heaving and pitching foil in a soap film
Florian T. Muijres, David Lentink

4. A harmonic model of hydrodynamic forces produced by a flapping fin
David N. Beal, Promode R. Bandyopadhyay

5. Flowfield measurements in the wake of a robotic lamprey
Marcus Hultmark, Megan Leftwich, Alexander J. Smits

6. Impulse generated during unsteady maneuvering of swimming fish
Brenden P. Epps, Alexandra H. Techet

7. Do trout swim better than eels? Challenges for estimating performance based on the wake of self-propelled bodies
Eric D. Tytell

8. Time resolved measurements of the flow generated by suction feeding fish
Steven W. Day, Timothy E. Higham, Peter C. Wainwright

9. Powered control mechanisms contributing to dynamically stable swimming in porcupine puffers (Teleostei: Diodon holocanthus)
Alexis M. Wiktorowicz, Dean V. Lauritzen, Malcolm S. Gordon

10. Fluid dynamics of self-propelled microorganisms, from individuals to concentrated populations
Luis H. Cisneros, Ricardo Cortez, Christopher Dombrowski, Raymond E. Goldstein, John O. Kessler

11. Swimming by microscopic organisms in ambient water flow
M. A. R. Koehl, Matthew A. Reidenbach

12. Water-walking devices
David L. Hu, Manu Prakash, Brian Chan, John W. M. Bush

13. Flapping flexible fish
Robert G. Root, Hayden-William Courtland, William Shepherd, John H. Long

14. Vortex dynamics in the wake of a mechanical fish
Christoph Brücker, Horst Bleckmann

15. Investigation of flow mechanism of a robotic fish swimming by using flow visualization synchronized with hydrodynamic force measurement
Guang-Kun Tan, Gong-Xin Shen, Shuo-Qiao Huang, Wen-Han Su, Yu Ke

II. The Physics of Flying

16. PIV-based investigations of animal flight
Geoffrey R. Spedding, Anders Hedenström

17. Wing–wake interaction reduces power consumption in insect tandem wings
Fritz-Olaf Lehmann

18. Experimental investigation of some aspects of insect-like flapping flight aerodynamics for application to micro air vehicles
Salman A. Ansari, Nathan Phillips, Graham Stabler, Peter C. Wilkins, Rafał Żbikowski, Kevin Knowles

19. Design and development considerations for biologically inspired flapping-wing micro air vehicles
Kevin D. Jones, Max F. Platzer

20. Smoke visualization of free-flying bumblebees indicates independent leading-edge vortices on each wing pair
Richard James Bomphrey, Graham K. Taylor, Adrian L. R. Thomas

21. The influence of airfoil kinematics on the formation of leading-edge vortices in bio-inspired flight
David Rival, Tim Prangemeier, Cameron Tropea

22. Wake patterns of the wings and tail of hovering hummingbirds
Douglas L. Altshuler, Marko Princevac, Hansheng Pan, Jesse Lozano

23. Characterization of vortical structures and loads based on time-resolved PIV for asymmetric hovering flapping flight
T. Jardin, Laurent David, A. Farcy

24. Unsteady fluid-structure interactions of membrane airfoils at low Reynolds numbers
P. Rojratsirikul, Z. Wang, I. Gursul

25. Aerodynamic and functional consequences of wing compliance
Andrew M. Mountcastle, Thomas L. Daniel

26. Shallow and deep dynamic stall for flapping low Reynolds number airfoils
Michael V. Ol, Luis Bernal, Chang-Kwon Kang, Wei Shyy

27. High-fidelity simulations of moving and flexible airfoils at low Reynolds numbers
Miguel R. Visbal, Raymond E. Gordnier, Marshall C. Galbraith

28. High-speed stereo DPIV measurement of wakes of two bat species flying freely in a wind tunnel
Anders Hedenström, F. T. Muijres, R. Busse, L. C. Johansson, Y. Winter, G. R. Spedding

29. Time-resolved wake structure and kinematics of bat flight
Tatjana Y. Hubel, Nickolay I. Hristov, Sharon M. Swartz, Kenneth S. Breuer

30. Experimental investigation of a flapping wing model
Tatjana Y. Hubel, Cameron Tropea

31. Aerodynamics of intermittent bounds in flying birds
Bret W. Tobalske, Jason W. D. Hearn, Douglas R. Warrick

32. Experimental analysis of the flow field over a novel owl based airfoil
Stephan Klan̈, Thomas Bachmann, Michael Klaas, Hermann Wagner, Wolfgang Schröder

33. The aerodynamic forces and pressure distribution of a revolving pigeon wing
James R. Usherwood

Keywords: Physics, Fluid- and Aerodynamics, Engineering Fluid Dynamics, Biophysics and Biological Physics

Author(s)
 
 
Publisher
Springer
Publication year
2010
Language
en
Edition
1
Category
Natural Sciences
Format
Ebook
eISBN (PDF)
9783642116339

Similar titles