## Hannemann, Klaus

# Shock Waves

**Table of contents**

**Part I. Plenary Lectures**

1. Relaxation effects in hypervelocity flow: selected contributions from the T5 Lab*H.G. Hornung*

2. CFD contributions to high-speed shock-related problems*K. Fujii*

3. Explosive eruptions of volcanos: simulation shock tube methods and multi-phase mathematical models*V. Kedrinskiy*

4. Ignition delay time measurements at practical conditions using a shock tube*E.L. Petersen*

5. Material processing and surface reaction studies in free piston driven shock tube*K.P.J. Reddy, M.S. Hegde, V. Jayaram*

6. Molecular dynamics of shock waves in dense fluids*S. Schlamp, B.C. Hathorn*

7. SBLI control for wings and inlets*H. Babinsky, H. Ogawa*

8. Shock pattern in the plume of rocket nozzles - needs for design consideration*G. Hagemann*

**Part II. Blast Waves**

9. A quick estimate of explosion-induced stress field in various media*A. Sakurai, K. Tanaka*

10. Attenuation properties of blast wave through porous layer*K. Kitagawa, S. Yamashita, K. Takayama, M. Yasuhara*

11. Blast wave reflection from lightly destructible wall*V.V. Golub, T.V. Bazhenova, O.A. Mirova, Y.L. Sharov, V.V. Volodin*

12. Gram-range explosive blast scaling and associated materials response*M.J. Hargather, G.S. Settles, J.A. Gatto*

13. High-speed digital shadowgraphy of shock waves from explosions and gunshots*M.M. Biss, G.S. Settles, M.J. Hargather, L.J. Dodson, J.D. Miller*

14. Modelling high explosives (HE) using smoothed particle hydrodynamics*M. Omang, S. Børve, J. Trulsen*

15. Modification of air blast loading transmission by foams and high density materials*B.E. Gelfand, M.V. Silnikov, M.V. Chernyshov*

16. Multifunctional protective devices for localizing the blast impact when conducting the ground and underwater operations of explosion cutting*B.I. Palamarchuk, A.T. Malakhov, A.N. Manchenko, A.V. Cherkashin, N.V. Korpan*

17. Propagation of the shock wave generated by two-dimensional beam focusing of a CO*S. Udagawa, Y. Yamamoto, S. Nakajima, K. Takei, K. Ohmura, K. Maeno*

18. Simulation of strong blast waves by simultaneous detonation of small charges - a conceptual study*A. Klomfass, G. Heilig, H. Klein*

19. Small-scale installation for research of blast wave dynamics*N.P. Mende, A.B. Podlaskin, A.M. Studenkov*

20. Strong blast in a heterogeneous medium*B.I. Palamarchuk*

**Part III. Chemically Reacting Flows**

21. Atomized fuel combustion in the reflected-shock region*B. Rotavera, E.L. Petersen*

22. Coupling CFD and chemical kinetics: examples Fire II and TITAN aerocapture*P. Leyland, S. Heyne, J.B. Vos*

23. Experimental investigation of catalytic and non-catalytic surface reactions on

*V. Jayaram, G.M. Hegde, M.S. Hegde, K.P.J. Reddy*

24. Experimental investigation of interaction of strong shock heated oxygen gas on the surface of ZrO*V. Jayaram, M.S. Hegde, K.P.J. Reddy*

25. Further studies on initial stages in the shock initiated H*K. Yasunaga, D. Takigawa, H. Yamada, T. Koike, Y. Hidaka*

26. Shock-tube development for high-pressure and low-temperature chemical kinetics experiments*J. Vries, C. Aul, A. Barrett, D. Lambe, E. Petersen*

27. Shock-tube study of tert-butyl methyl ether pyrolysis*K. Yasunaga, Y. Hidaka, A. Akitomo, T. Koike*

28. Temperature dependence of the soot yield in shock wave pyrolysis of carbon-containing precursors*A. Drakon, A. Emelianov, A. Eremin, A. Makeich, H. Jander, H.G. Wagner, C. Schulz, R. Starke*

29. Thermal reactions of o-dichlorobenzene. Single pulse shock tube investigation*A. Lifshitz, A. Suslensky, C. Tamburu*

30. Wall heat transfer in shock tubes at long test times*C. Frazier, A. Kassab, E.L. Petersen*

**Part IV. Detonation and Combustion**

31. A study on DDT processes in a narrow channel*K. Nagai, T. Okabe, K. Kim, T. Yoshihashi, T. Obara, S. Ohyagi*

32. Combustion in a horizontal channel partially filled with porous media*C. Johansen, G. Ciccarelli*

33. Continuum/particle interlocked simulation of gas detonation*A. Kawano, K. Kusano*

34. Dependence of PDE performance on divergent nozzle and partial fuel filling*Z.X. Liang, Y.J. Zhu, J.M. Yang*

35. Direct Monte-Carlo simulation of developing detonation in gas*Z.A. Walenta, K. Lener*

36. Effects of detailed chemical reaction model on detonation simulations*N. Tsuboi, M. Asahara, A.K. Hayashi, M. Koshi*

37. Effects of flame jet configurations on detonation initiation*K. Ishii, T. Akiyoshi, M. Gonda, M. Murayama*

38. Experimental and theoretical investigation of detonation and shock waves action on phase of hydrocarbon mixture in porous media*D.I. Baklanov, L.B. Director, S.V. Golovastov, V.V. Golub, I.L. Maikov, V.M. Torchinsky, V.V. Volodin, V.M. Zaichenko*

39. Experimental and theoretical study of valveless fuel supply system for PDE*D.I. Baklanov, S.V. Golovastov, N.W. Tarusova, L.G. Gvozdeva*

40. Experimental investigation of the ignition spark shock waves influence on detonation formation in hydroxygen mixtures*D.I. Baklanov, S.V. Golovastov, V.V. Golub, V.V. Volodin*

41. Experimental study on the nonideal detonation for JB-9014 rate sticks*L. Zou, D. Tan, S. Wen, J. Zhao, C. Liu*

42. Experimental study on transmission of an overdriven detonation wave across a mixture*J. Li, K. Chung, W.H. Lai, F.K. Lu*

43. Flow vorticity behavior in inhomogeneous supersonic flow past shock and detonation waves*V.A. Levin, G.A. Skopina*

44. Ground reflection interaction with height-of-burst metalized explosions*R.C. Ripley, L. Donahue, T.E. Dunbar, S.B. Murray, C.J. Anderson, F. Zhang, D.V. Ritzel*

45. High-fidelity numerical study on the on-set condition of oblique detonation wave cell structures*J.Y. Choi, E.J.R. Shin, D.R. Cho, I.S. Jeung*

46. High-pressure shock tube experiments and modeling of n-dodecane/air ignition*S.S. Vasu, D.F. Davidson, R.K. Hanson*

47. Implicit-explicit Runge-Kutta methods for stiff combustion problems*E. Lindblad, D.M. Valiev, B. Müller, J. Rantakokko, P. Lütstedt, M.A. Liberman*

48. Near-field blast phenomenology of thermobaric explosions*D.V. Ritzel, R.C. Ripley, S.B. Murray, J. Anderson*

49. Numerical and theoretical analysis of the precursor shock wave formation at high-explosive channel detonation*P. Vu, H.W. Leung, V. Tanguay, R. Tahir, E. Timofeev, A. Higgins*

50. Numerical study on shockwave structure of superdetonative ram accelerator*K. Sung, I.-S. Jeung, F. Seiler, G. Patz, G. Smeets, J. Srulijes*

51. Numerical study on the self-organized regeneration of transverse waves in cylindrical detonation propagations*C. Wang, Z. Jiang*

52. On the mechanism of detonation initiations*Z. Jiang, H. Teng, D. Zhang, S.V. Khomik, S.P. Medvedev*

53. Overview of the 2005 Northern Lights Trials*S.B. Murray, C.J. Anderson, K.B. Gerrard, T. Smithson, K. Williams, D.V. Ritzel*

54. Physics of detonation wave propagation in 3D numerical simulations*H.-S. Dou, B.C. Khoo, H.M. Tsai*

55. Propagation of cellular detonation in the plane channels with obstacless*V. Levin, V. Markov, T. Zhuravskaya, S. Osinkin*

56. Re-initiation of detonation wave behind slit-plate*J. Sentanuhady, Y. Tsukada, T. Obara, S. Ohyagi*

57. Shock-to-detonation transition due to shock interaction with prechamber-jet cloud*S.M. Frolov, V.S. Aksenov, V.Y. Basevich*

58. Shock-to-detonation transition in tube coils*S.M. Frolov, I.V. Semenov, I.F. Ahmedyanov, V.V. Markov*

59. Simulation of hydrogen detonation following an accidental release in an enclosure*L. Fang, L. Bédard-Tremblay, L. Bauwens, Z. Cheng, A.V. Tchouvelev*

60. Spectroscopic studies of micro-explosions*G. Hegde, A. Pathak, G. Jagadeesh, C. Oommen, E. Arunan, K.P.J. Reddy*

61. Structural response to detonation loading in 90-degree bend*Z. Liang, T. Curran, J.E. Shepherd*

62. Study on perforated plate induced deflagration waves in a smooth tube*Y.J. Zhu, Z.X. Liang, J.H.S. Lee, J.M. Yang*

63. Unconfined aluminum particles-air detonation*F. Zhang, K.B. Gerrard, R.C. Ripley, V. Tanguay*

64. Viscous attenuation of a detonation wave propagating in a channel*P. Ravindran, R. Bellini, T.-H. Yi, F.K. Lu*

**Part V. Diagnostics**

65. A diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube*H. Li, A. Farooq, R.D. Cook, D.F. Davidson, J.B. Jeffries, R.K. Hanson*

66. A novel fast-response heat-flux sensor for measuring transition to turbulence in the boundary layer behind a moving shock wave*T. Roediger, H. Knauss, J. Srulijes, F. Seiler, E. Kraemer*

67. Application of HEG static pressure probe in HIEST*T. Hashimoto, S. Rowan, T. Komuro, K. Sato, K. Itoh, M. Robinson, J. Martinez Schramm, K. Hannemann*

68. Application of laser-induced thermal acoustics to temperature measurement of the air behind shock waves*T. Mizukaki*

69. Assessment of rotational and vibrational temperatures behind strong shock waves derived from CARS method*A. Matsuda, M. Ota, K. Arimura, S. Bater, K. Maeno, T. Abe*

70. Availability of the imploding technique as an igniter for large-scale natural-gas-engines*T. Tsuboi, S. Nakamura, K. Ishii, M. Suzuki*

71. Experimental study of SiC-based ablation products in high-temperature plasma-jets*M. Funatsu, H. Shirai*

72. On pressure measurements in blast wave flow fields generated by milligram charges*S. Rahman, E. Timofeev, H. Kleine, K. Takayama*

73. Quantitative diagnostics of shock wave - boundary layer interaction by digital speckle photography*N. Fomin, E. Lavinskaya, P. Doerffer, J.-A. Szumski, R. Szwaba, J. Telega*

**Part VI. Facilities**

74. A simulation technique for radiating shock tube flows*R.J. Gollan, C.M. Jacobs, P.A. Jacobs, R.G. Morgan, T.J. McIntyre, M.N. Macrossan, D.R. Buttsworth, T.N. Eichmann, D.F. Potter*

75. Aerodynamic force measurement technique with accelerometers in the impulsive facility HIEST*H. Tanno, T. Komuro, K. Sato, K. Itoh*

76. On the free-piston shock tunnel at UniBwM (HELM)*K. Schemperg, C. Mundt*

77. Progress towards a microfabricated shock tube*G. Mirshekari, M. Brouillette*

**Part VII. Flow Visualisation**

78. A tool for the design of slit and cutoff in schlieren method*D. Kikuchi, M. Anyoji, M. Sun*

79. Application of pressure-sensitive paints in high-speed flows*H. Zare-Behtash, N. Gongora, C. Lada, D. Kounadis, K. Kontis*

80. Doppler Picture Velocimetry (DPV) applied to hypersonics*A. Pichler, A. George, F. Seiler, J. Srulijes, M. Havermann*

81. On the conservation laws for light rays across a shock wave: Toward computer design of an optical setup for flow visualization*M. Sun*

82. Shock stand-off distance over spheres flying at transonic speed ranges in air*T. Kikuchi, D. Numata, K. Takayama, M. Sun*

83. Shock tube study of the drag coefficient of a sphere*G. Jourdan, L. Houas, O. Igra, J.-L. Estivalezes, C. Devals, E.E. Meshkov*

84. Three-dimensional interferometric CT measurement of discharging shock/vortex flow around a cylindrical solid body*M. Ota, T. Inage, K. Maeno*

85. Vizualization of 3D non-stationary flow in shock tube using nanosecond volume discharge*I.A. Znamenskaya, I.V. Mursenkova, T.A. Kuli-Zade, A.N. Kolycheva*

**Part VIII. Hypersonic Flow**

86. Assessment of the convective and radiative transfers to the surface of an orbiter entering a Mars-like atmosphere*N. Bédon, M.-C. Druguet, D. Zeitoun, P. Boubert*

87. Base pressure and heat transfer on planetary entry type configurations*G. Park, S. L. Gai, A. J. Neely, R. Hruschka*

88. Combustion performance of a scramjet engine with inlet injection*S. Rowan, T. Komuro, K. Sato, K. Itoh*

89. COMPARE, a combined sensor system for re-entry missions*A. Preci, G. Herdrich, M. Gräßlin, H.-P. Röser, M. Auweter-Kurtz*

90. Drag reduction by a forward facing aerospike for a large angle blunt cone in high enthalpy flows*V. Kulkarni, P.S. Kulkarni, K.P.J. Reddy*

91. Drag reduction by counterflow supersonic jet for a blunt cone in high enthalpy flows*V. Kulkarni, K.P.J. Reddy*

92. Effect of electric arc discharge on hypersonic blunt body drag*K. Satheesh, G. Jagadeesh*

93. Effect of the nose bluntness on the electromagnetic flow control for reentry vehicles*H. Otsu, T. Matsumura, Y. Yamagiwa, M. Kawamura, H. Katsurayama, A. Matsuda, T. Abe, D. Konigorski*

94. Enhanced design of a scramjet intake using two different RANS solvers*M. Krause, J. Ballmann*

95. Experimental and numerical investigation of film cooling in hypersonic flows*K.A. Heufer, H. Olivier*

96. Experimental and numerical investigation of jet injection in a wall bounded supersonic flow*J. Ratan, G. Jagadeesh*

97. Experimental investigation of cowl shape and location on inlet characteristics at hypersonic Mach number*D. Mahapatra, G. Jagadeesh*

98. Experimental investigation of heat transfer reduction using forward facing cavity for missile shaped bodies flying at hypersonic speed*S. Saravanan, K. Nagashetty, G. Jagadeesh, K.P.J. Reddy*

99. Extrapolation of a generic scramjet model to flight scale by experiments, flight data and CFD*A. Mack, J. Steelant, K. Hannemann*

100. Force measurements of blunt cone models in the HIEST high enthalpy shock tunnel*K. Sato, T. Komuro, M. Takahashi, T. Hashimoto, H. Tanno, K. Itoh*

101. Investigations of separated flow over backward facing steps in IISc hypersonic shock tunnel*P. Reddeppa, K. Nagashetty, G. Jagadeesh*

102. Measurement of aerodynamic forces for missile shaped body in hypersonic shock tunnel using 6-component accelerometer based balance system*S. Saravanan, G. Jagadeesh, K.P.J. Reddy*

103. Measurement of shock stand-off distance on a 120° blunt cone model at hypersonic Mach number in Argon*K. Satheesh, G. Jagadeesh*

104. Model for shock interaction with sharp area reduction*J. Falcovitz, O. Igra*

105. Modelling dissociation in hypersonic blunt body and nozzle flows in thermochemical nonequilibrium*E. Josyula, W.F. Bailey*

106. Numerical and experimental investigation of viscous shock layer receptivity and instability*A. Kudryavtsev, S. Mironov, T. Poplavskaya, I. Tsyryulnikov*

107. Numerical rebuilding of the flow in a valve-controlled Ludwieg tube*T. Wolf, M. Estorf, R. Radespiel*

108. Numerical study of shock interactions in viscous, hypersonic flows over double-wedge geometries*Z.M. Hu, R.S. Myong, T.H. Cho*

109. Numerical study of thermochemical relaxation phenomena in high-temperature nonequilibrium flows*S. Kumar, H. Olivier, J. Ballmann*

110. Numerical study of wall temperature and entropy layer effects on transitional double wedge shock wave/boundary layer interactions*T. Neuenhahn, H. Olivier*

111. Similarity laws of re-entry aerodynamics - analysis of reverse flow shock and wake flow thermal inversion phenomena*S. Balage, R. Boyce, N. Mudford, H. Ranadive, S. Gai*

112. Simultanous measurements of 2-D total radiation and CARS data from hypervelocity flow behind strong shock waves*K. Maeno, M. Ota, A. Matsuda, B. Suhe, K. Arimura*

113. Shock tunnel testing of a Mach 6 hypersonic waverider*K. Hemanth, G. Jagadeesh, S. Saravanan, K. Nagashetty, K.P.J. Reddy*

114. Supersonic flow over axisymmetric cavities*Khadijeh Mohri, Richard Hillier*

115. Tandem spheres in hypersonic flow*S.J. Laurence, R. Deiterding, H.G. Hornung*

116. Three dimensional experimental investigation of a hypersonic double-ramp flow*F.F.J. Schrijer, R. Caljouw, F. Scarano, B.W. Oudheusden*

117. Triple point shear layers in hypervelocity flow*M. Sharma, L. Massa, J.M. Austin*

**Part IX. Ignition**

118. Auto-ignition of hydrogen-air mixture at elevated pressures*A.N. Derevyago, O.G. Penyazkov, K.A. Ragotner, K.L. Sevruk*

119. Discrepancies between shock tube and rapid compression machine ignition at low temperatures and high pressures*E.L. Petersen, M. Lamnaouer, J. Vries, H. Curran, J. Simmie, M. Fikri, C. Schulz, G. Bourque*

120. Ignition delay studies on hydrocarbon fuel with and without additives*M. Nagaboopathy, G. Hegde, K.P.J. Reddy, C. Vijayanand, M. Agarwal, D.S.S. Hembram, D. Bilehal, E. Arunan*

121. Ignition of hydrocarbon–containing mixtures by nanosecond discharge: experiment and numerical modelling*I.N. Kosarev, S.V. Kindusheva, N.L. Aleksandrov, S.M. Starikovskaia, A.Y. Starikovskii*

122. Laser-based ignition of hydrogen-oxygen mixture*Y.V. Tunik, O. Haidn, O.P. Shatalov*

123. Measurements of ignition delay times and OH species concentrations in DME/O*R.D. Cook, D.F. Davidson, R.K. Hanson*

124. Shock tube study of artificial ignition of N*I.N. Kosarev, S.M. Starikovskaia, A.Y. Starikovskii*

125. Shock tube study of kerosene ignition delay*S. Wang, B.C. Fan, Y.Z. He, J.P. Cui*

126. Shock-tube study of the ignition delay time of tetraethoxysilane (TEOS)*A. Abdali, M. Fikri, H. Wiggers, C. Schulz*

**Keywords:** Engineering, Engineering Thermodynamics, Heat and Mass Transfer, Mechanics, Fluids, Thermodynamics, Engineering Fluid Dynamics, Fluids, Acoustics, Automotive Engineering

- Author(s)
- Hannemann, Klaus
- Seiler, Friedrich
- Publisher
- Springer
- Publication year
- 2009
- Language
- en
- Edition
- 1
- Page amount
- 829 pages
- Category
- Technology, Energy, Traffic
- Format
- Ebook
- eISBN (PDF)
- 9783540851684