Tartar, Luc
An Introduction to Sobolev Spaces and Interpolation Spaces
1. Historical Background
2. The Lebesgue Measure, Convolution
3. Smoothing by Convolution
4. Truncation; Radon Measures; Distributions
5. Sobolev Spaces; Multiplication by Smooth Functions
6. Density of Tensor Products; Consequences
7. Extending the Notion of Support
8. Sobolev's Embedding Theorem, 1= 10. Poincaramp;#x00E9;'s Inequality 11. The Equivalence Lemma; Compact Embeddings 12. Regularity of the Boundary; Consequences 13. Traces on the Boundary 14. Green's Formula 15. The Fourier Transform 16. Traces of 17. Proving that a Point is too Small 18. Compact Embeddings 19. Lax–Milgram Lemma 20. The Space 21. Background on Interpolation; the Complex Method 22. Real Interpolation; 23. Interpolation of 24. Real Interpolation; 25. Interpolation Inequalities, the Spaces ( 26. The Lions–Peetre Reiteration Theorem 27. Maximal Functions 28. Bilinear and Nonlinear Interpolation 29. Obtaining 30. My Approach to Sobolev's Embedding Theorem 31. My Generalization of Sobolev's Embedding Theorem 32. Sobolev's Embedding Theorem for Besov Spaces 33. The Lions–Magenes Space H_{00}^{1/2} ( Omega) 34. Defining Sobolev Spaces and Besov Spaces for 35. Characterization of 36. Characterization of 37. Variants with 38. Replacing 39. Shocks for Quasi-Linear Hyperbolic Systems 40. Interpolation Spaces as Trace Spaces 41. Duality and Compactness for Interpolation Spaces 42. Miscellaneous Questions 43. Biographical Information 44. Abbreviations and Mathematical Notation DRM-restrictions Printing: not available Keywords: MATHEMATICS / General MAT000000
Clipboard copying: not available
- Author(s)
- Tartar, Luc
- Publisher
- Springer
- Publication year
- 2007
- Language
- en
- Edition
- 1
- Category
- Natural Sciences
- Format
- Ebook
- eISBN (PDF)
- 9783540714835