Carvalho, Alexandre N.
Attractors for infinite-dimensional non-autonomous dynamical systems
1. The pullback attractor
Alexandre N. Carvalho, José A. Langa, James C. Robinson
2. Existence results for pullback attractors
Alexandre N. Carvalho, José A. Langa, James C. Robinson
3. Continuity of attractors
Alexandre N. Carvalho, José A. Langa, James C. Robinson
4. Finite-dimensional attractors
Alexandre N. Carvalho, José A. Langa, James C. Robinson
5. Gradient semigroups and their dynamical properties
Alexandre N. Carvalho, José A. Langa, James C. Robinson
6. Semilinear differential equations
Alexandre N. Carvalho, José A. Langa, James C. Robinson
7. Exponential dichotomies
Alexandre N. Carvalho, José A. Langa, James C. Robinson
8. Hyperbolic solutions and their stable and unstable manifolds
Alexandre N. Carvalho, José A. Langa, James C. Robinson
9. A non-autonomous competitive Lotka–Volterra system
Alexandre N. Carvalho, José A. Langa, James C. Robinson
10. Delay differential equations
Alexandre N. Carvalho, José A. Langa, James C. Robinson
11. The Navier–Stokes equations with non-autonomous forcing
Alexandre N. Carvalho, José A. Langa, James C. Robinson
12. Applications to parabolic problems
Alexandre N. Carvalho, José A. Langa, James C. Robinson
13. A non-autonomous Chafee–Infante equation
Alexandre N. Carvalho, José A. Langa, James C. Robinson
14. Perturbation of diffusion and continuity of global attractors with rate of convergence
Alexandre N. Carvalho, José A. Langa, James C. Robinson
15. A non-autonomous damped wave equation
Alexandre N. Carvalho, José A. Langa, James C. Robinson
16. Appendix: Skew-product flows and the uniform attractor
Alexandre N. Carvalho, José A. Langa, James C. Robinson
Keywords: Mathematics, Partial Differential Equations, Dynamical Systems and Ergodic Theory, Manifolds and Cell Complexes (incl. Diff.Topology)
- Author(s)
- Carvalho, Alexandre N.
- Langa, José A.
- Robinson, James C.
- Publisher
- Springer
- Publication year
- 2013
- Language
- en
- Edition
- 2012
- Series
- Applied Mathematical Sciences
- Page amount
- 36 pages
- Category
- Natural Sciences
- Format
- Ebook
- eISBN (PDF)
- 9781461445814