Lesaffre, Emmanuel

Bayesian Biostatistics

Lesaffre, Emmanuel - Bayesian Biostatistics, ebook


Ebook, ePUB with Adobe DRM
ISBN: 9781118314579
DRM Restrictions

Printing96 pages with an additional page accrued every 8 hours, capped at 96 pages
Copy to clipboard5 excerpts

The growth of biostatistics has been phenomenal in recent years and has been marked by considerable technical innovation in both methodology and computational practicality. One area that has experienced significant growth is Bayesian methods. The growing use of Bayesian methodology has taken place partly due to an increasing number of practitioners valuing the Bayesian paradigm as matching that of scientific discovery. In addition, computational advances have allowed for more complex models to be fitted routinely to realistic data sets.

Through examples, exercises and a combination of introductory and more advanced chapters, this book provides an invaluable understanding of the complex world of biomedical statistics illustrated via a diverse range of applications taken from epidemiology, exploratory clinical studies, health promotion studies, image analysis and clinical trials.

Key Features:

  • Provides an authoritative account of Bayesian methodology, from its most basic elements to its practical implementation, with an emphasis on healthcare techniques.
  • Contains introductory explanations of Bayesian principles common to all areas of application.
  • Presents clear and concise examples in biostatistics applications such as clinical trials, longitudinal studies, bioassay, survival, image analysis and bioinformatics.
  • Illustrated throughout with examples using software including WinBUGS, OpenBUGS, SAS and various dedicated R programs.
  • Highlights the differences between the Bayesian and classical approaches.
  • Supported by an accompanying website hosting free software and case study guides.

Bayesian Biostatistics introduces the reader smoothly into the Bayesian statistical methods with chapters that gradually increase in level of complexity. Master students in biostatistics, applied statisticians and all researchers with a good background in classical statistics who have interest in Bayesian methods will find this book useful.

Keywords: Biostatistics, biomedical statistics, Bayesian methodology, healthcare statistics, Bayesian healthcare statistics, statistics clinical trials, survival data statistics, longitudinal analysis statistics, disease mapping statistics, bioassay statistics, time series statistics, bioinformatics

John Wiley and Sons, Inc.
Publication year
Statistics in Practice
Page amount
320 pages
Medicine, Health Care, Mode
Printed ISBN

Similar titles