Login

Dworsky, Lawrence N.

Probably Not: Future Prediction Using Probability and Statistical Inference

Dworsky, Lawrence N. - Probably Not: Future Prediction Using Probability and Statistical Inference, ebook

93,15€

Ebook, ePUB with Adobe DRM
ISBN: 9781119518129
DRM Restrictions

Printing106 pages with an additional page accrued every 7 hours, capped at 106 pages
Copy to clipboard5 excerpts

A revised edition that explores random numbers, probability, and statistical inference at an introductory mathematical level

Written in an engaging and entertaining manner, the revised and updated second edition of Probably Not continues to offer an informative guide to probability and prediction. The expanded second edition contains problem and solution sets. In addition, the book’s illustrative examples reveal how we are living in a statistical world, what we can expect, what we really know based upon the information at hand and explains when we only think we know something.

The author introduces the principles of probability and explains probability distribution functions. The book covers combined and conditional probabilities and contains a new section on Bayes Theorem and Bayesian Statistics, which features some simple examples including the Presecutor’s Paradox, and Bayesian vs. Frequentist thinking about statistics. New to this edition is a chapter on Benford’s Law that explores measuring the compliance and financial fraud detection using Benford’s Law. This book:

  • Contains relevant mathematics and examples that demonstrate how to use the concepts presented
  • Features a new chapter on Benford’s Law that explains why we find Benford’s law upheld in so many, but not all, natural situations
  • Presents updated Life insurance tables
  • Contains updates on the Gantt Chart example that further develops the discussion of random events
  • Offers a companion site featuring solutions to the problem sets within the book

Written for mathematics and statistics students and professionals, the updated edition of Probably Not: Future Prediction Using Probability and Statistical Inference, Second Edition combines the mathematics of probability with real-world examples.

LAWRENCE N. DWORSKY, PhD, is a retired Vice President of the Technical Staff and Director of Motorola’s Components Research Laboratory in Schaumburg, Illinois, USA. He is the author of Introduction to Numerical Electrostatics Using MATLAB from Wiley.

Keywords:

Statistical probability; random events and probability; math basics statistical probability; probability distribution function; averages and weighted averages; expected values; problems of statistical probability; standard deviation 

, Applied Probability & Statistics, Popular Interest Statistics, Applied Probability & Statistics, Popular Interest Statistics
Author(s)
Publisher
John Wiley and Sons, Inc.
Publication year
2019
Language
en
Edition
2
Page amount
352 pages
Category
Natural Sciences
Format
Ebook
eISBN (ePUB)
9781119518129
Printed ISBN
9781119518105

Similar titles