# Introduction to Bayesian Estimation and Copula Models of Dependence

108,15€

ISBN: 9781118959022
DRM Restrictions

Printing 106 pages with an additional page accrued every 7 hours, capped at 106 pages 5 excerpts

Presents an introduction to Bayesian statistics, presents an emphasis on Bayesian methods (prior and posterior), Bayes estimation, prediction, MCMC,Bayesian regression, and Bayesian analysis of statistical modelsof dependence, and features a focus on copulas for risk management

Introduction to Bayesian Estimation and Copula Models of Dependence emphasizes the applications of Bayesian analysis to copula modeling and equips readers with the tools needed to implement the procedures of Bayesian estimation in copula models of dependence. This book is structured in two parts: the first four chapters serve as a general introduction to Bayesian statistics with a clear emphasis on parametric estimation and the following four chapters stress statistical models of dependence with a focus of copulas.

A review of the main concepts is discussed along with the basics of Bayesian statistics including prior information and experimental data, prior and posterior distributions, with an emphasis on Bayesian parametric estimation. The basic mathematical background of both Markov chains and Monte Carlo integration and simulation is also provided. The authors discuss statistical models of dependence with a focus on copulas and present a brief survey of pre-copula dependence models. The main definitions and notations of copula models are summarized followed by discussions of real-world cases that address particular risk management problems.

• Practical examples of copulas in use including within the Basel Accord II documents that regulate the world banking system as well as examples of Bayesian methods within current FDA recommendations

• Step-by-step procedures of multivariate data analysis and copula modeling, allowing readers to gain insight for their own applied research and studies

• Separate reference lists within each chapter and end-of-the-chapter exercises within Chapters 2 through 8

• A companion website containing appendices: data files and demo files in Microsoft® Office Excel®, basic code in R, and selected exercise solutions

Introduction to Bayesian Estimation and Copula Models of Dependence is a reference and resource for statisticians who need to learn formal Bayesian analysis as well as professionals within analytical and risk management departments of banks and insurance companies who are involved in quantitative analysis and forecasting. This book can also be used as a textbook for upper-undergraduate and graduate-level courses in Bayesian statistics and analysis.

ARKADY SHEMYAKIN, PhD, is Professor in the Department of Mathematics and Director of the Statistics Program at the University of St. Thomas. A member of the American Statistical Association and the International Society for Bayesian Analysis, Dr. Shemyakin's research interests include informationtheory, Bayesian methods of parametric estimation, and copula models in actuarial mathematics, finance, and engineering.

ALEXANDER KNIAZEV, PhD, is Associate Professor and Head of the Department of Mathematics at Astrakhan State University in Russia. Dr. Kniazev's research interests include representation theory of Lie algebras and finite groups, mathematical statistics, econometrics, and financial mathematics.

Author(s)

Publisher
John Wiley and Sons, Inc.
Publication year
2017
Language
en
Edition
1
Page amount
352 pages
Category
Natural Sciences
Format
Ebook
eISBN (ePUB)
9781118959022
Printed ISBN
9781118959015

## Similar titles

### Models for Life: An Introduction to Discrete Mathematical Modeling with Microsoft Office Excel

Barton, Jeffrey T.

117,60€

Kolluri, Bharat

124,10€

### Illuminating Statistical Analysis Using Scenarios and Simulations

Kottemann, Jeffrey E.

122,10€

### Introduction to Stochastic Processes with R

Dobrow, Robert P.

124,10€

Kroese, Dirk P.

119,55€

Congdon, Peter

85,70€