Login

Wang, Liang

Machine Learning for Vision-Based Motion Analysis

Wang, Liang - Machine Learning for Vision-Based Motion Analysis, ebook

124,00€

Ebook, PDF with Adobe DRM
ISBN: 9780857290571
DRM Restrictions

PrintingNot allowed
Copy to clipboardNot allowed

Table of contents

1. Practical Algorithms of Spectral Clustering: Toward Large-Scale Vision-Based Motion Analysis
Tomoya Sakai, Atsushi Imiya

2. Riemannian Manifold Clustering andDimensionality Reduction forVision-BasedAnalysis
Alvina Goh

3. Manifold Learning for Multi-dimensional Auto-regressive Dynamical Models
Fabio Cuzzolin

4. Mixed-State Markov Models in Image Motion Analysis
Tomás Crivelli, Patrick Bouthemy, Bruno Cernuschi Frías, Jian-feng Yao

5. Learning to Detect Event Sequences inSurveillance Streams at Very Low Frame Rate
Paolo Lombardi, Cristina Versino

6. Discriminative Multiple Target Tracking
Xiaoyu Wang, Gang Hua, Tony X. Han

7. A Framework of Wire Tracking in Image Guided Interventions
Peng Wang, Andreas Meyer, Terrence Chen, Shaohua K. Zhou, Dorin Comaniciu

8. An Integrated Approach to Visual Attention Modeling for Saliency Detection in Videos
Sunaad Nataraju, Vineeth Balasubramanian, Sethuraman Panchanathan

9. Video-Based Human Motion Estimation byPart-Whole Gait Manifold Learning
Guoliang Fan, Xin Zhang

10. Spatio-Temporal Motion Pattern Models ofExtremely Crowded Scenes
Louis Kratz, Ko Nishino

11. Learning Behavioral Patterns of Time Series forVideo-Surveillance
Nicoletta Noceti, Matteo Santoro, Francesca Odone

12. Recognition of Spatiotemporal Gestures in Sign Language Using Gesture Threshold HMMs
Daniel Kelly, John McDonald, Charles Markham

13. Learning Transferable Distance Functions forHuman Action Recognition
Weilong Yang, Yang Wang, Greg Mori

Keywords: Computer Science, Image Processing and Computer Vision, Artificial Intelligence (incl. Robotics)

Author(s)
 
 
 
Publisher
Springer
Publication year
2011
Language
en
Edition
1
Series
Advances in Pattern Recognition
Category
Information Technology, Telecommunications
Format
Ebook
eISBN (PDF)
9780857290571

Similar titles