Molenberghs, Geert
Models for Discrete Longitudinal Data
1. Introduction
2. Motivating Studies
3. Generalized Linear Models
4. Linear Mixed Models for Gaussian Longitudinal Data
5. Model Families
6. The Strength of Marginal Models
7. Likelihood-based Marginal Models
8. Generalized Estimating Equations
9. Pseudo-Likelihood
10. Fitting Marginal Models with SAS
11. Conditional Models
12. Pseudo-Likehood
13. From Subject-specific to Random-effects Models
14. The Generalized Linear Mixed Model (GLMM)
15. Fitting Generalized Linear Mixed Models with SAS
16. Marginal
17. The Analgesic Trial
18. Ordinal Data
19. The Epilepsy Data
20. Non-linear Models
21. Pseudo-Likelihood for a Hierarchical Model
22. Random-effects Models with Serial Correlation
23. Non-Gaussian Random Effects
24. Joint Continuous and Discrete Responses
25. High-dimensional Joint Models
26. Missing Data Concepts
27. Simple Methods, Direct Likelihood, and Weighted Generalized Estimating Equations
28. Multiple Imputation and the Expectation-Maximization Algorithm
29. Selection Models
30. Pattern-mixture Models
31. Sensitivity Analysis
32. Incomplete Data and SAS
DRM-restrictions
Printing: not available
Clipboard copying: not available
Keywords: MATHEMATICS / Probability & Statistics / General MAT029000
- Author(s)
- Molenberghs, Geert
- Verbeke, Geert
- Publisher
- Springer
- Publication year
- 2005
- Language
- en
- Edition
- 1
- Category
- Natural Sciences
- Format
- Ebook
- eISBN (PDF)
- 9780387289809